La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa.
DESARROLLO DE LA LEY
Variación de la Fuerza de Coulomb en función de la distancia.
En la barra de la balanza, Coulomb colocó una pequeña esfera cargada y a continuación, a diferentes distancias, posicionó otra esfera también cargada. Luego midió la fuerza entre ellas observando el ángulo que giraba la barra.
Dichas mediciones permitieron determinar que:
• La fuerza de interacción entre dos cargas y duplica su magnitud si alguna de las cargas dobla su valor, la triplica si alguna de las cargas aumenta su valor en un factor de tres, y así sucesivamente. Concluyó entonces que el valor de la fuerza era proporcional al producto de las cargas:
y
en consecuencia:
• Si la distancia entre las cargas es , al duplicarla, la fuerza de interacción disminuye en un factor de 4 (2²); al triplicarla, disminuye en un factor de 9 (3²) y al cuadriplicar , la fuerza entre cargas disminuye en un factor de 16 (4²). En consecuencia, la fuerza de interacción entre dos cargas puntuales, es inversamente proporcional al cuadrado de la distancia:
Asociando ambas relaciones:
Finalmente, se introduce una constante de proporcionalidad para transformar la relación anterior en una igualdad:
ENUNCIADO DE LA LEY
La ley de Coulomb es válida sólo en condiciones estacionarias, es decir, cuando no hay movimiento de las cargas o, como aproximación cuando el movimiento se realiza a velocidades bajas y en trayectorias rectilíneas uniformes. Es por ello llamada fuerza electrostática.
En términos matemáticos, la magnitud de la fuerza que cada una de las dos cargas puntuales y ejerce sobre la otra separadas por una distancia se expresa como:
Dadas dos cargas puntuales y separadas una distancia en el vacio, se atraen o repelen entre sí con una fuerza cuya magnitud esta dada por:
La Ley de Coulomb se expresa mejor con magnitudes vectoriales:
donde es un vector unitario que va en la dirección de la recta que une las cargas, siendo su sentido desde la carga que produce la fuerza hacia la carga que la experimenta.El exponente (de la distancia: d) de la Ley de Coulomb es, hasta donde se sabe hoy en día, exactamente 2. Experimentalmente se sabe que, si el exponente fuera de la forma
, entonces
EJERCICIOS RESUELTOS.
Ejercicio 1
Determinar la fuerza que actúa sobre las cargas eléctricas q1 = + 1 x 10-6 C. y q2 = + 2,5 x 10-6 C. que se encuentran en reposo y en el vacío a una distancia de 5 cm.
Resolución:
Para calcular la fuerza de interacción entre dos cargas eléctricas puntuales en reposo recurriremos a la ley de Coulomb por lo tanto previo transformar todas las magnitudes en juego a unidades del sistema internacional de medidas nos queda que:
Como la respuesta obtenida es de signo positivo nos está indicando que la fuerza es de repulsión.
Respuesta:
La fuerza de repulsión tiene un módulo de 9 N. pero debemos indicar además en un esquema gráfico las demás características del vector tal como se indica en el gráfico.
Ejercicio 2
Determinar la fuerza que actúa sobre las cargas eléctricas q1 = -1,25 x 10-9 C. y q2 = +2 x 10-5 C. que se encuentran en reposo y en el vacío a una distancia de 10 cm.
Resolución: Para calcular la fuerza de interacción entre dos cargas eléctricas puntuales en reposo recurriremos a la ley de Coulomb por lo tanto previo transformar todas las magnitudes en juego a unidades del sistema internacional de medidas nos queda que:
Como la respuesta obtenida es de signo negativo nos está indicando que la fuerza es de atracción.
Respuesta: La fuerza de atracción tiene un módulo de 2,25 x 10-2 N. pero debemos indicar además en un esquema gráfico las demás características del vector lo que sería así:
Ejercicio 3
Suponga que se tiene tres cargas puntuales localizadas en los vértices de un triángulo recto, como se muestra en la figura, donde q1 = -80 C, q2 = 50 C y q3 = 70 C, distancia AC = 30 cm, distancia AB = 40 cm. Calcular la fuerza sobre la carga q3 debida a las cargas q1 y q2.
Las direcciones de las fuerzas sabemos coinciden con las líneas que unen a cada par de cargas puntuales. La fuerza que q1 ejerce sobre q3, F31, es de atracción. La fuerza que q2 ejerce sobre q3, F32, es de repulsión. Así, las fuerzas F31 y F32 tienen las direcciones que se indican. La separación entre q3 y q1 se obtiene de (CB)2 = (AC)2 + (AB)2 = (0.3 m)2 + (0.4 m)2, de donde CB = 0.5 m.
Las magnitudes de tales fuerzas son:
F31 = [(9x109 Nm2 /C2)(80x10-6 C)(70x10-6 C)]/ (0.5 m)2
F31= 201.6 N
F32 = [(9x109 Nm2 /C2)(5 0x10-6 C)(70x10-6 C)]/ (0.3 m)2
F32= 350 N
Conviene disponer ejes coordenados xy tal como se indica en la figura, con el origen en la carga donde deseamos calcular la fuerza resultante, en este caso en q3.
Llamando F3 a la fuerza resultante sobre q3, entonces :
F3= F31 + F32 .
Luego, en términos de componentes x e y :
F3x = F31x + F32x
F3y = F31y + F32y
F31x =F31cos =(201.6 N)x(40/50)=161.3 N ;F31y=-F31sen =-201.6x30/50 =-121 N
F32x = 0 ; F32y = F32 = 350 N
F3x = 161.3 N + 0 = 161.3 N ; F3y = -121 N + 350 N = 229 N
La magnitud de la fuerza neta F3 se obtiene de (F3)2
F3 = (F3x)2 + (F3y>)2, resultando F3 = 280 N.
El ángulo de esta fuerza se obtiene de
tg = F3y/ F3x= 229/161.3
tg = 1.42
= 54.8º.
No hay comentarios:
Publicar un comentario